Comparative Study on Crystal Structures of $\text{[Ru(bpy)}_2\text{(CO)}_2\text{]}(\text{PF}_6)_{2}$ $[\text{Ru(bpy)}_2(CO)(C(O)OCH_3)]B(C_6H_5)_4\\cCH_3CN$, and $[\text{Ru(bpy)}_2(CO)(\eta^1-CO_2)]$. 3H₂O (bpv = 2.2'-Bipvridyl)

Hiroaki Tanaka, Biing-Chiau Tzeng,[†] Hirotaka Nagao, Shie-Ming Peng,† and Koji Tanaka^{*}

Institute for Molecular Science, Department of Structural Molecular Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki **444,** Japan

Received July 30, *1992*

The molecular structures of $[Ru(bpy)_2(CO)_2](PF_6)_2$, $[Ru(bpy)_2(CO)(C(O)OCH_3)]B(C_6H_5)_4$ [,]CH₃CN as a model complex of $\text{[Ru(bpy)}_2(\text{CO})(\text{C(O)OH})$ ⁺, and $\text{[Ru(bpy)}_2(\text{CO})(\eta^1-\text{CO}_2)\cdot\cdot\cdot\cdot\cdot\cdot$ have been determined by X-ray analysis. The observation that the Ru-C(O)OCH₃ bond distance of $[Ru(bpy)_2(CO)(C(O)OCH_3)]^+$ is shorter than the Ru-CO₂ one of $[Ru(bpy)_{2}(CO)(CO_{2})]$ suggests that the multibond character of the Ru-CO₂ bond is not larger than that for Ru-C(O)OCH₃. One extra electron pair involved in $[Ru(bpy)₂(CO)(CO₂)]$ resulting from dissociation of a terminal proton of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{C(O)OH})\right]^+$ may be mainly localized in the CO₂ ligand rather than delocalized over the RuCO₂ moiety, and the extended three-dimensional network of hydrogen bonding between the CO₂ ligand and three hydrated water molecules compensates the increase in the electron density of the CO₂ moiety of $[Ru(bpy)₂(CO)(CO₂)]₃H₂O.$

Introduction

Much attention has been paid to the activation of carbon dioxide on transition metal complexes.' Since the first characterization of $Ni(PCy_3)_2(\eta^2$ -CO₂),^{3c} a variety of CO₂-metal complexes with η ¹-,² η ²-,³ μ ²-,⁴ and μ ³-⁵ CO₂ modes have been prepared. The η ¹-CO₂ mode may be more suitable than other modes as active species in the reduction of $CO₂$ to CO and/or HCOOH, since $[M(\eta^1-CO_2)]^{n+}$ would be smoothly converted to $[M(C-$ (O)OH)]⁽ⁿ⁺¹⁾⁺ and [M(CO)]⁽ⁿ⁺²⁾⁺. In high oxidation metal complexes, the η ¹-CO₂ mode may be thermodynamically unstable due to an electronic repulsion between positively charged $CO₂$

- **(2)** (a) Calabrese, J. C.; Herskovitz, T.; Kinney, J. **8.** J. *Am. Cfiem. Soc.* **1983,105,5914.** (b) Gambarotta, **S.;** Arena, F.; Floriani, C.; Zanazzi, **P.** F. J. *Am. Cfiem. SOC.* **1982,** *104,* **5082. (3)** (a) Alvarez, R ; Carmona, E.; Marin, J. M.; Poveda, M. L.; Gutierrez-
- Puebla, E.; Monge, A. *J. Am. Chem.* **SOC. 1986,108,2286.** (b) Bristow. **G.** *S.;* Hitchcock, P. B.; Lappert, M. F. *J. Cfiem.* **Soc.,** *Cfiem. Commun.* **1981, 1145.** (c) Aresta, M.; Nobile, F. *J. Cfiem.* **SOC.,** *Cfiem. Commun.* 1975, 636. (d) Jegat, C.; Mascetti, J. New J. Chem. 1991, 15, 17. (e)
Jegat, C.; Fouassier, M.; Mascetti, J. *New J. Chem.* 1991, 15, 17. (e)
Jegat, C.; Fouassier, M.; Mascetti, J. *Inorg. Chem.* 1991, 30, 1521. (f)
Jegat, **30, 1529.**
- **(4)** John, **G.** R.; **Johnson,** 8. F. G.; Lewis, J.; Wong, K. C. J. *Organomer. Cfiem.* **1979, 169, C23.**
- *(5)* (a) Eady, C. R.;Guy, J. J.; Johnson, B. F. **G.;** Lewis, J.; Malatesta, M. C.; Sheldrick, **G.** M. J. *Cfiem.* **Soc..** *Cfiem. Commun.* **1976,602.** (b) Beck, **W.;** Raab, K.; Nagel, **U.;** Steimann, M. *Angew. Cfiem.. Int. Ed. Engl.* **1982,** *115,* **2271.** (c) Lundquist, E. G.; Huffman, J. C.; Folting, K.; Mann, B. E.; Caulton, K. **G.** *Inorg. Cfiem.* **1990, 29, 128.**

carbon and metal atoms. The η ¹-CO₂ mode, on the other hand, is favored by the charge-transfer interaction from the d_{z} orbital of the low oxidation metals such as Rh(I) and Co(I) to the π^* orbital of $CO₂$ ⁶ Despite intensive studies on catalytic $CO₂$ reduction by using homogeneous catalysts in recent years, there are only two reports² that determine the molecular structure of η ¹-CO₂ complexes. It is, therefore, highly desired to elucidate the molecular structures of a series of η ¹-CO₂, hydroxycarbonyl, and carbonyl metal complexes as possible active species in photoand electrochemical $CO₂$ reductions.

We have reported that $[Ru(bpy)₂(CO)₂]^{2+}$ (bpy = 2,2'bipyridyl) exists as equilibrium mixtures with $\left[\text{Ru(bpy)}\right]_{2-1}$ $(CO)(C(O)OH)$ ⁺ and its deprotonated species $(Ru(bpy)₂$ - $(CO)(CO₂)$ (eqs 1 and 2) with the equilibrium constants, $K₁$

$$
[Ru(bpy)2(CO)2]2+ + OH- \rightleftharpoons
$$

$$
[Ru(bpy)2(CO)(C(O)OH)]+ (1)
$$

$$
[Ru(bpy)2(CO)(C(O)OH)]+ + OH- [Ru(bpy)2(CO)(CO2)] + H2O (2)
$$

and K_2 , of 1.32×10^5 and 2.27×10^4 mol⁻¹ dm³, respectively, in H₂O, and the interconversion between $[Ru(bpy)₂(CO)(CO₂)]$ and $[Ru(bpy)_2(CO)(C(O)OH)]^+$ takes place in a diffusioncontrolled reaction.' Those complexes function as active species in not only a water gas shift reaction⁸ but also electro-⁹ and photochemical¹⁰ CO₂ reductions. Furthermore, two-electron reduction of $[Ru(bpy)₂(CO)₂]$ ²⁺ in dry CH₃CN under CO₂

- **(6)** (a) Sakaki, **S.;** Aizawa, T.; Koga, N.; Morokuma, K.; Ohkubo, K. *Inorg. Cfiem.* **1989, 28, 103.** (b) Sakaki, *S.;* Dedieu, A. *Inorg. Cfiem.* **1987, 26, 3278.**
- **(7)** Tanaka, K.; Morimoto, M.; Tanaka, T. *Cfiem. Lett.* **1983, 901.**
- **(8)** Ishida, **H.;** Tanaka, K.; Morimoto, M.; Tanaka, T. *Organometallics* **1986, 5, 724.**
- **(9)** Ishida, **H.;** Tanaka, K.; Tanaka, T. *Organometallics* **1987,** 6, **181. (IO)** Ishida, H.; Terada, T.; Tanaka, K.; Tanaka, T. *Inorg. Cfiem.* **1990, 29, 905.**
- (11) A prolonged electrolysis of $\{Ru(bpy)_2(CO)(CO_2)\}$ at -1.10 V in dry CH₁CN results in a slow decomposition of the η^1 -CO₂ complex even under a CO₂ atmosphere." Therefore, reduction of $\{Ru(bpy)_2(CO)_2\}^2$ ⁺ under a

0 1993 American Chemical Society

Department of Chemistry, National Taiwan University, Roosevelt Road Section **4,** Taipei, Taiwan, Republic of China.

⁽I) (a) Jutand. A.; Amatore, C. *J. Am. Chem. SOC.* **1991, 113, 2819.** (b) Dubois, D. L.; Miedaner, A.; Haltiwanger, R. C. *J. Am. Cfiem.* **Soc. 1991, 113,8753.** (c) Atoguchi, T.; Aramata, A,; Kazusaka, A,; Enyo, M. *J. Cfiem.* **Soc.,** *Cfiem. Commun.* **1991, 156.** (d) Tsai, J. C.; Khan, M. A.; Nicholas, K. M. *Organometallics* **1991, 10, 29.** (e) Fujita, **E.;** Creutz. C.; Sutin, N.;Szalda, D. J.J. *Am. Cfiem. SOC.* **1991,113, 343.** (f) Ishida, **H.;** Fujiki, K.; Ohba, T.; Ohkubo, K.; Tanaka, K.; Terada, T.; Tanaka, T. *J. Chem. Soc.. Dalton Trans.* **1990,2155.** (g) Pugh, J. R.; Bruce, M. R. M.; Sullivan, B. P.; Meyer, T. J. *Inorg. Cfiem.* **1991, 30,86.** (h) Tamaura, **Y.;** Tabata, M. *Nature (London)* **1990,346,255.** (i) Ruiz, J.; Guerchais, **V.;** Astruc, D. J. *Chem. SOC.. Cfiem. Commun.* **1989.8 12.** (j) Tomohiro, T.; Uoto, K.; Okuno, **H.** J. *Chem. SOC., Cfiem. Commun.* **1990, 194.** (k) Eisenschmid, T. C.; Eisenberg, R. *Organometallics* **1989,8. 1822.** (I) Tukahara, K.; Wilkins, R. G. *Inorg. Cfiem.* **1989,28, 1605.** (m) Silavwe, N. D.; Goldman, A. S.; Ritter, R.; Tyler, D. R. *Inorg. Chem.* **1989, 28, 1231. (n)** Sugimura, K.; Kuwabata, *S.;* Yoneyama, H.J. *Am. Chem. SOC.* **1989,111,2361.** *(0)* Hurrell, H. C.; Mogstad, A. L.; Usifer, D. A.; Potts, K. T.; Abruna, H. D. *Inorg. Chem.* **1989,28,1080.** (p) Tanaka, K.; Wakita, R.; Tanaka, T. J. *Am. Cfiem.* **SOC. 1989.** *111,* **2428** and references therein.

Table I. Data for Crystal Structure Analysis of $\left[\text{Ru(bpy)}_{2}(\text{CO})(\text{CO}_{2})\right]+3\text{H}_{2}\text{O},$ $\overline{[Ru(bpy)]_2(CO)(C(O)OCH_3)]B(C_6H_5)_4$ CH₃CN, and $[Ru(bpy)₂(CO)₂](PF₆)₂$

formula	$C_{22}H_{22}N_4$ - O.Ru	$C_{49}H_{42}O_3N_{57}$ BRu	$C_{22}H_{16}F_{12}N_{4}$ O_2P_2Ru
fw	539.51	860.77	759.39
a, A	8.672(2)	9.548(3)	12.034(2)
b, A	12.279(1)	13.004(5)	16.434(3)
c. A	20.820(4)	17.743(4)	13.925(3)
a, deg.	90.00	77.26(3)	90.00
$b,$ deg.	97.48(6)	74.89(2)	94.88(1)
c, deg.	90.00	83.64(3)	90.00
Z:V, A ³	4: 2190.1(7)	2; 2071.1(12)	4: 2743.9(9)
space group	$P2_1/n$	ΡĪ	$P2_1/c$
D_{cal} , g/cm^3	1.64	1.38	1.84
θ range, deg.	27.5	25	27.5
no. of data used	2370	7219	3770
$(F_0 > 4\sigma(F_0))^a$			
no. of variables	299	532	389
final $R(F)$ / $R_{\rm w}(F)$, $\sqrt[5]{6}$	7.1/7.9	4.5/4.5	6.9/8.1

 F_0 > 2 $\sigma(F_0)$ for $\text{[Ru(bpy)_2(CO)(C(O)OCH_3)]B(C_6H_5)_4\text{-CH}_3CN.}$ $P(R(F) = (\sum ||F_{o}|| - |F_{c}||)/\sum |F_{o}|$. $R_w(F) = [\sum W(|F_{o}|-|F_{c}|)^2]/\sum w|F_{o}|^2$.

Table 11. Selected Bond Distances **(A)** and Bond Angles (deg) for $[Ru(bpy)₂(CO)(CO₂)]·3H₂O$

$Ru-C1$	2.064(13)	Ru-N4	2.105(10)
$Ru-C2$	1.815(14)	$C1-O1$	1.245(16)
$Ru-N1$	2.073(10)	$C1-O2$	1.283(15)
$Ru-N2$	2.133(10)	$C2-O3$	1.145(17)
$Ru-N3$	2.204(10)		
$C1-Ru-C2$	88.5(6)	$N1-Ru-N2$	77.6(4)
$Cl-Ru-N1$	88.7(5)	$N2-Ru-N3$	88.5(4)
$C1-Ru-N2$	86.6(4)	N3-Ru-N4	76.9(4)
$Cl-Ru-N3$	172.6(5)	N4-Ru-N1	167.0(4)
$C1-Ru-N4$	97.7(5)	$Ru-C1-O1$	118.5(9)
$C2-Ru-N1$	96.7(5)	$Ru-C1-O2$	120.6(10)
$C2-Ru-N2$	172.7(5)	$O1 - C1 - O2$	120.9(12)
$C2-Ru-N3$	96.9(5)	Ru-C2-O3	178.8(11)
$C2-Ru-N4$	94.7(5)		

atmosphere produces $[Ru(bpy)_2(CO)(CO_2)]^{11}$ with evolving CO (eq 3).¹⁰ We, therefore, proposed that $[Ru(bpy)₂(CO)(CO₂)]$

$$
[Ru(bpy)2(CO)2]2+ + CO2 + 2e- \rightarrow
$$

$$
[Ru(bpy)2(CO)(CO2)] + CO (3)
$$

formed in eq 2 is a kind of an η ¹-CO₂ complex. The comparison of the molecular structures of $[Ru(bpy)_2(CO)(CO_2)]$, $[Ru (bpy)_2(CO)(C(O)OH)$ ⁺, and $[Ru(bpy)_2(CO)_2]^{2+}$ may give fundamental information with respect to the smooth conversion among CO, $C(O)OH$, and $CO₂$ on the Ru atom. This paper describes the molecular structures of $[Ru(bpy)_{2}(CO)_{2}]^{2+}$, $[Ru(bpy)₂(CO)(C(O)OCH₃)]$ ⁺ as a model compound of [Ru- $(bpy)_2(CO)(C(O)OH)$ ⁺, and $[Ru(bpy)_2(CO)(CO_2)]$. A part of this study has been reported elsewhere.¹²

Experimental Section

Materials. $[Ru(bpy)_2(CO)_2](PF_6)_2$ and $[Ru(bpy)_2(CO)(C(O)OH)]PF_6$ were prepared according to the literatures.^{8,13} $[Ru(bpy)_2(CO)(C-C)$ $(O)OCH₃)$]B(C₆H₅)₄.CH₃CN for X-ray structure analysis was similarly prepared as $[Ru(bpy)_2(CO)(C(O)OCH_3)]PF_6$.⁸ A methanolic $(C_4H_9)_4NOH$ (Bu₄NOH) solution (0.347 M) was used without further purification. CH₃OH was dried over 4-Å molecular sieves. CH₃CN was distilled over calcium hydride.

Preparation of $\{Ru(bpy)_2(CO)(CO_2)\}$ **3H₂O.** To a stirred H₂O, C_2H_5OH solution (100 cm³, 1:1 v/v) of $[Ru(bpy)_2(CO)_2](PF_6)_2$ (602 mg) was added a methanolic solution (5 cm³) of Bu₄NOH (0.347 M).

Table 111. Selected Bond Distances (A) and Bond Angles (deg) for $[Ru(bpy)₂(CO)(C(O)OCH₃)]B(C₆H₅)₄·CH₃CN$

$Ru-C1$	2.042(6)	Ru-N4	2.093(5)
Ru-C2	1.800(7)	$C1-O1$	1.191(8)
$Ru-N1$	2.070(5)	$C1-02$	1.344(8)
$Ru-N2$	2.105(5)	$O2-C3$	1.463(9)
$Ru-N3$	2.151(5)	$C2-O3$	1.154(8)
$C1-Ru-C2$	88.5(3)	$C2-Ru-N1$	95.6(2)
$Cl-Ru-N1$	89.8(2)	$C2-Ru-N2$	172.9(2)
$Cl-Ru-N2$	89.1(2)	$C2-Ru-N3$	98.8(2)
$Cl-Ru-N3$	169.9(2)	$C2-Ru-N4$	91.4(2)
$Cl-Ru-N4$	95.9(2)	$Ru-C1-O1$	125.4(5)
$N1-Ru-N2$	77.7(2)	$Ru-C1-O2$	115.4(4)
$N2-Ru-N3$	84.5(2)	$O1 - C1 - O2$	119.2(6)
$N3-Ru-N4$	77.0(2)	$C1-O2-C3$	116.4(6)
$N4-Ru-N1$	171.1(2)	$Ru-C2-C3$	176.5(6)

Table IV. Selected Bond Distances (A) and Bond Angles (deg) for $[Ru(bpy)₂(CO)₂](PF₆)₂$

Slow evaporation of the resulting reddish yellow solution gave red crystals, which were washed with CH₃CN and dried under reduced pressure. Anal. Calcd for $C_{22}H_{22}N_4O_6Ru$: C, 48.98; H, 4.11; N, 10.38. Found: C, 48.86; H, 3.99; N, 10.37. Yield: 340 mg (80%). Infrared spectrum (KBr): ν (C=O), 1911 cm⁻¹; ν (CO₂), 1428, 1242 cm⁻¹. ¹³C NMR (67.8) MHz): δ 203.9 and 210.2 (CO₂ and CO), 158.2, 157.7, 157.1, 156.6, **l55.9,155.8,150.0,149.1,140.0,139.9,139.8,137.8,127.9,127.7,127.5,** 127.4, 124.7, 124.6, 124.2, 123.6 (bpy).

Reaction of [Ru(bpy)z(CO)(CO2))3HzO with Iodometbane To Afford $[\text{Ru(bpy)}_2(\text{CO})(\text{C(O)OCH}_3)]$ I. A CD₃CN/CD₃OD solution (0.6 cm³, 1:1 v/v) containing $\left[\text{Ru(bpy)}_2(\text{CO})(\text{CO}_2)\right] \cdot 3\text{H}_2\text{O}$ (22.2 mg) and iodomethane (5.9 mg) was allowed to stand for 3 h under N_2 atmosphere. ¹H and ¹³C NMR spectra of the resulting solution were consistent with those of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{C(O)OCH}_3)\right]B(C_6H_5)_4$ in the same solvent. ¹H NMR (270 MHz): 6 3.36 (s) (the methyl proton). 13C NMR (67.8 MHz): *6* 202.2 and 206.8 (CO and methoxycarbonyl); *6* 158.0, 156.9, **156.5,156.2,l55.7,150.6,149.0,140.7,140.6,140.5,139.3,128.5,128.5, 128.2,128.0,125.4,125.1,124.6,124.2** (bpy); 6 49.9 (the methyl group).

'FNMR Datafor[Ru(bpy)2(CO)(C(0)OH)]PF6: *6* 201.5 and 205.1 (CO and hydroxycarbonyl); *6* 158.3, 157.2, 156.7, 156.4, 156.1, 150.5, **148.6,141.0,140.8,140.8,139.6,128.7,128.6,128.4,128.2,125.6,125.3,** 124.9, 124.4 (bpy).

Physical Measurements and Product Analysis. Infrared spectra were obtained on a Shimadzu DR8000 spectrophotometer. ¹H and ¹³C NMR data were obtained on a JEOL EX270 spectrometer. Elemental analyses were carried out at the Chemical Materials Center of Institute for Molecular Science. Electrochemical measurements were performed in a Pyrex cell equipped with a glassy-carbon working electrode. a Pt auxiliary electrode, an Ag/AgCI reference electrode, and a nozzle for bubbling of N_2 or CO_2 . Cyclic voltammograms were obtained by use of a Hokuto Denko HR-1019 potentiostat, a Hokuto Denko HB-IO7A function generator, and a Yokokawa Electric Inc. 3077 X-Y recorder.

X-ray Crystallographic Studies. The reflections **of** X-ray analysis were collected by $\theta - 2\theta$ technique ($0 < 2\theta < 55^{\circ}$ for $\left[\text{Ru(bpy)}_{2}(\text{CO})-\right]$ (CO_2)]-3H₂O and $[Ru(bpy)_2(CO)_2]$ (PF₆)₂, and $0 < 2\theta < 50^\circ$ for [Ru- $(bpy)_2(CO)(C(O)OCH_3)$] $B(C_6H_5)_4$ CH₃CN on an Enraf-Nonius CAD4- $GX21$ automated four-circle diffractometer with Mo $K\alpha$ radiation (0.7107 Å). The 2370 and 3770 independent reflections, for $\left[\text{Ru(bpy)}_{2}(\text{CO})\right]$ (CO_2)]-3H₂O and $[Ru(bpy)_2(CO)_2]$ (PF₆)₂, respectively, with $F_o > 4\sigma(F_o)$, and 7219 independent reflections for $\left[\text{Ru(bpy)}_2(\text{CO})(\text{C}(\text{O})-\text{C}(\text{CO})\right]$ OCH₃)]B(C₆H₅)₄·CH₃CN with $F_0 > 2\sigma(F_0)$ were used for the structure refinement. **Allofthecalculationswerecarriedouton** a HITAC-M680H

⁽¹²⁾ Tanaka, H.;Nagao, H.; Peng,S.-M.;Tanaka, **K.** Organometallics **1992,** */I,* **1450.**

⁽¹³⁾ Kelly, J. M.;OConnell. C. M.J. Chem. *Soc..* Dalton Trans. **1986,253.**

Figure 1. Infrared spectra (KBr) of $[Ru(bpy)_2(CO)(CO_2)]$ (dotted line) and of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{CO}_2)\right]$ after being dissolved in $\text{CH}_3\text{OH}/\text{H}_2{}^{18}\text{O}$ (99% enriched) **(5:l,** v/v) (solid line).

computer, using the UNlCS **111** program. The structures were solved by the heavy-atom method. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions and included in thestructure factorcalculations. Thedata **forcrystalstructuresanalysis** are shown in Table I. Selected bond distances and angles for $[Ru(bpy)_2(CO)(CO_2)]·3H_2O$, $[Ru(bpy)_2(CO)(C(O)OCH_3)]B(C_6H_5)_4.$ CH₃CN, and $[Ru(bpy)₂(CO)₂](PF₆)₂$ are shown in Tables II-IV.

Results and Discussion

Isolation of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{CO}_2)\right]$ **3H₂O. A colorless H₂O/** C_2H_5OH (1:1 v/v) solution of $[Ru(bpy)_2(CO)_2](PF_6)_2$ rapidly changed to yellow by an addition of an equimolar amount of a methanolic Bu4NOH. Concentration of the solution afforded $[Ru(bpy)₂(CO)(C(O)OH)]PF₆$ as a yellow solid, which shows strong ν (C=O) and ν (C=O) bands at 1946 and 1619 cm^{-1.8} These bands were shifted to 1904 and 1586 cm-1 after the hydroxycarbonyl complex was dissolved in $CH₃OH/CH₃CN/$ H_2 ¹⁸O (5:2:1 v/v) for 30 min. On the other hand, the H_2O C_2H_5OH (1:1 v/v) solution of $\left[\text{Ru(bpy)}_2(\text{CO})_2\right](PF_6)_{2}$ turned to reddish yellow by an addition of 2 equiv of Bu4NOH. Slow evaporation of the reddish yellow solution gave red single crystals of $\left[\text{Ru(bpy)}_{2}(\text{CO})(\text{CO}_{2})\right] \cdot 3\text{H}_{2}\text{O}$. The infrared spectrum of $[Ru(bpy)₂(CO)(CO₂)]·3H₂O$ shows the $\nu(C=O)$ band at 1911 cm⁻¹ and the $\nu(CO_2)$ bands at 1428 and 1242 cm⁻¹ (Figure 1). Those bands were shifted to 1869, 1407 and 1213 cm-1 after the complex was dissolved in $CH₃OH/H₂$ ¹⁸O (99% enriched) (5:1 v/v) for 3 h. Thus, the oxygen atoms of both $CO₂$ and CO of $[Ru(bpy)₂(CO)(CO₂)]$ are replaced by that of $H₂¹⁸O$ (Figure 1, *eq* 4).

$$
[Ru(bpy)2(CO)(CO2)] + 3H2*O \rightleftharpoons
$$

[Ru(bpy)₂(C^{*}O)(C^{*}O₂)] + 3H₂O (4)

The ¹³C NMR spectrum of $[Ru(bpy)₂(CO)₂](PF₆)₂$ showed the CO carbon at 190.3 ppm in CD_3CN , and the CO and CO_2 signals of $\text{[Ru(bpy)}_2(\text{CO})(\text{CO}_2)\text{]} \cdot 3\text{H}_2\text{O}$ were observed at 203.9 and 210.2 ppm in CD₃OD. An addition of an equimolar amount of a methanolic solution of $Bu₄NOH$ to the $(Ru(bpy)$. $(CO)₂$](PF₆)₂ solution resulted in a complete disappearance of the 190.3 ppm signal, and the CO and COOH carbons of $[Ru(bpy)₂(CO)(C(O)OH)]$ ⁺ appeared at 201.5 and 205.1 ppm

Figure 2. Cyclic voltammogram of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{CO}_2)\right] \cdot 3\text{H}_2\text{O}$ in CHJCN containing 0.1 M **Bu4NBFs** as a supporting electrolyte under N_2 (solid lines) and CO_2 (dotted lines). $dE/dt = 100$ mV/s.

with 19 signals of two nonequivalent 2,2'-bipyridyl ligands. Such selective formation of $[Ru(bpy)₂(CO)(C(O)OH)]⁺$ in the reaction of an equimolar amount of OH- with $[Ru(bpy)₂(CO)₂]$ ²⁺ in $CH₃CN$ is quite contrast to that in $H₂O$, where $[Ru(bpy)₂(CO) (C(O)OH)$ ⁺ always exists as an equilibrium mixture with either $[Ru(bpy)₂(CO)₂]²⁺$ or $[Ru(bpy)₂(CO)(CO₂)]$, or both of them. In fact, a further addition of a methanolic solution of Bu₄NOH (about 1.2 molar excess) to the $CH₃CN$ solution of [Ru- $(bpy)_2(CO)_2$](PF₆)₂ caused an appearance of two signals of 203.9 and 210.2 ppm of $[Ru(bpy)_2(CO)(CO_2)]$ in addition to the 201.5 and 205.1 ppm signals of $\left[\text{Ru(bpy)}_{2}(\text{CO})(\text{C(O)OH})^{+.14} \right]$ This result indicates that the interconversion between [Ru- $CD₃OD$ is very slow compared with that in $H₂O$. $(bpy)_2(CO)(C(O)OH$ ⁺ and $[Ru(bpy)_2(CO)(CO_2)]$ in CD₃CN/

Cooper et al. have demonstrated that $[W(CO)_{5}(\eta^{1}-CO_{2})]^{2-}$ produced in the reaction of $W(CO)_{6}$ with Li under CO_{2} at -78 \degree C in THF undergoes an oxide-abstraction reaction by CO₂ to regenerate $W(CO)_{6}$ at room temperature (eq 5).¹⁵ Such an

$$
[W(CO)_{5}(\eta^{1} \text{-} CO_{2})]^{2-} + CO_{2} \rightarrow W(CO)_{6} + CO_{3}^{2-} (5)
$$

unusual oxide-abstraction reaction by $CO₂$ may be rationalized by a strong nucleophilicity of the oxygen atom of the $CO₂$ ligand. In contrast to eq 5, $[Ru(bpy)_2(CO)(CO_2)]$ is quite stable in

⁽¹⁴⁾ The concentration of the ruthenium complexes became **too** low to detect the ¹³C NMR signals when the CH₃CN solution of [Ru-**(bpy):(CO):](PF&** was mixed with a **2** molexcessof methanolicsolution *of* Bu~NOH.

⁽IS) Maher, J. M.; Lee,G. R.;Cooper, N. J. *J. Am. Chcm. Soc. 1982,101, 6191*

Figure 3. Molecular structure of $[Ru(bpy)₂(CO)(CO₂)$.

Figure 4. Molecular structure of $[Ru(bpy)_2(CO)(C(O)OCH_3)]^+$.

CH30H at room temperature, as described above. The 13C NMR of $\text{[Ru(bpy)}_2(\text{CO})(\text{CO}_2)\text{]} \cdot 3\text{H}_2\text{O}$ in CO₂-saturated CD₃OH, however, revealed the formation of both $\left[\text{Ru(bpy)}_{2}(CO)\right]$ -(C(O)OH)]+ (201.5 and **205.1** ppm) and CD3OC(O)O- **(161.4** ppm), and neither $[Ru(bpy)_2(CO)(CO_2)]$ nor $[Ru(bpy)_2(CO)_2]^{2+}$ was detected in the solution. The absence of $\left[\text{Ru(bpy)}_2(\text{CO})_2\right]^{2+}$ in the CO₂-saturated CD₃OH indicates that $[Ru(bpy)₂(CO)$ - $(CO₂)$] does not undergo an oxide-abstraction reaction by $CO₂$. On the basis of the $pK_a = 9.5$ of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{C(O)OH})\right]^+,$ protonation of $[Ru(bpy)₂(CO)(CO₂)]$ affording $[Ru(bpy)₂ (CO)(C(O)OH)$ ⁺ in CO₂-saturated CD₃OH is explained by enhancement of the acidity of CD₃OH due to concomitant

formation of CD₃OCO₂⁻ (eq 6). The conversion of
$$
[Ru(bpy)2-(Ru(bpy)2(CO)(CO2)] + CH3OH + CO2 \rightarrow
$$
 $[Ru(bpy)2(CO)(CO)(O(O)OH)]^{+} + CH3OCO2 (6)$

 $(CO)(CO₂)$] to $(Ru(bpy)₂(CO)(C(O)OH)$ ⁺ in $CO₂$ -saturated CH3OH was also observed in **a** cyclic voltammogram (CV); the CV of **[Ru(bpy)2(CO)(CO2)].3H20shows** an irreversible anodic wave at **+0.53** V vs Ag/AgCl (a solid line in Figure 2a) and a strong cathodic current at potential more negative than **-1.25** V in $CH₃OH$ under an $N₂$ atmosphere (a solid line in Figure 2b). The anodic $+0.53$ - V wave completely disappears in CO_2 -saturated $CH₃OH$ (a dotted line in Figure 2a), and the reduction of $CO₂$ takes place at potentials more negative than **-1.18** V (a dotted line in Figure 2b). Those results may make clear the roles of

Figure 5. Molecular structure of $[Ru(bpy)₂(CO)₂]^{2+}$.

 $[Ru(bpy)₂(CO)(CO₂)]$ and $[Ru(bpy)₂(CO)(C(O)OH)]$ ⁺ in a previous electrochemical $CO₂$ reduction catalyzed by [Ru- $(bpy)_2(CO)_2$ ²⁺, where $\text{[Ru(bpy)}_2(CO)(C(O)OH)\text{]}^+$ resulting from $[Ru(bpy)₂(CO)(CO₂)]$ functions as the active species for the formation of HCOO⁻ in CO₂-saturated CH₃OH.¹⁶

In comparison with eqs 5 and 6, the nucleophilicity of the CO₂ ligand of $[Ru(bpy)₂(CO)(CO₂)]$ may be much less than that of $[W(CO)₅(\eta¹-CO₂)]²$. It has, however, been reported that a neutral η^1 -CO₂ complex [IrCl(dmpe)₂(η^1 -CO₂)] can be converted to the corresponding methoxycarbonyl complex [IrCl- $(dmpe)₂(C(O)OCH₃)$]FSO₃ by a treatment with a strong methylation agent such as $CH₃FSO₃.¹⁷$ In the present study, $[Ru(bpy)₂(CO)(C(O)OCH₃)]$ I was quite smoothly obtained in the reaction of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{CO}_2)\right] \cdot 3\text{H}_2\text{O}$ with CH₃I in CH₃OH (eq 7). It is worthy to note that $[Ru(bpy)₂(CO)$ - $(C(O)OCH₃)$ ⁺ can be also synthesized by the reaction of $[Ru(bpy)₂(CO)₂]$ ²⁺ with CH₃ONa in CH₃OH (eq 8).⁸ Thus,

$$
[Ru(bpy)2(CO)(CO2)] + CH3I \rightarrow [Ru(bpy)2(CO)(C(O)OCH3)]I (7)
$$

$$
[Ru(bpy)2(CO)2]2+ + CH3O- \rightarrow
$$

$$
[Ru(bpy)2(CO)(C(O)OCH3)]+ (8)
$$

 $[Ru(bpy)₂(CO)(C(O)OCH₃)]$ ⁺ can be prepared not only by an electrophilic attack of $CH₃I$ to $[Ru(bpy)₂(CO)(CO₂)]$ but also by a nucleophilic attack of CH_3O^- to $[Ru(bpy)_2(CO)_2]^{2+}$.

 ${[Ru(bpy)_2(CO)(C(O)OH)]}^+ + CH_3OCO_2^-$ (6) $(bpy)_2(CO)_2] (PF_6)_2$ and ${[Ru(bpy)_2(CO)(CO_2)]} \cdot 3H_2O$ suitable **X-ray Structure Analysis.** A comparison of the molecular structures of $[Ru(bpy)₂(CO)₂]²⁺$, $[Ru(bpy)₂(CO)(C(O)OH)]⁺$, and $[Ru(bpy)₂(CO)(CO₂)]$ is particularly interested in the viewpoint of the smooth interconversion among those complexes in H_2O . Although colorless and red single crystals of [Rufor X-ray crystal analysis were obtained successfully, attempts to grow single crystals of $[Ru(bpy)₂(CO)(C(O)OH)]⁺$ were unsuccessful. The crystal structure of $[Ru(bpy)_2(CO)(C(O) OCH₃$] B(C₆H₅)₄·CH₃CN, therefore, was determined as a model compound of $[Ru(bpy)₂(CO)(C(O)OH)]$ ⁺ based on the view that the molecular structure of $[Ru(bpy)_2(CO)(C(O)OH)]^+$ can be safely presumed by that of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{C}(\text{O})\text{OCH}_3)\right]^+$. The

⁽¹⁶⁾ Ishida, **H.;** Tanaka, H.; Tanaka, K.; Tanaka, **T.** *J. Chem.* **Soc.,** *Chem. Commun. 1981,* **131.**

⁽¹⁷⁾ Harlow, **R.** L.; Kinney, J. **B.;** Herskovitz, T. *J. Chem. Soc., Chrm. Commun. 1980, 8* **13.**

Figure 6. Bond distances and angles of $Ru(CO)(CO₂)$, $Ru(CO)(C(O)OCH₃)$, and $Ru(CO)₂$ moieties.

molecular structures of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{CO}_2)\right] \cdot 3\text{H}_2\text{O}$, $\left[\text{Ru-tdot}(\text{CO}_2)\right] \cdot 3\text{H}_2$ $(bpy)_2(CO)(C(O)OCH_3)$]B(C_6H_5)₄·CH₃CN, and [Ru(bpy)₂- $(CO)_2$](PF₆)₂ are shown in Figures 3-5. Two 2,2'-bipyridyl ligands of three complexes are in a cis position, and the bond distances and angles of the 2,2'-bipyridyl ligands are similar to those observed in the other 2,2'-bipyridyl-ruthenium complexes reported so far.18 **So,** the structural difference in the present complexes is focused on the $Ru(CO)_2$, $Ru(CO)(C (O)OCH₃$), and $Ru(CO)(CO₂)$ moieties (Figure 6). Although the lengths of the C1-01 (1.144(12) **A)** and C2-02 bonds $(1.125(11)$ Å) for $\left[\text{Ru(bpy)}_{2}(\text{CO})_{2}\right]^{2+}$ are not so different from those of the C2-O3 bonds for $[Ru(bpy)_2(CO)(C(O)OCH_3)]^+$ and $[Ru(bpy)₂(CO)(CO₂)]$ (1.154(8) and 1.145(17) Å, respectively), the wavenumber of $\nu(C=0)$ bands decreases in the order $[Ru(bpy)₂(CO)₂]^{2+}$ (2093 and 2039 cm⁻¹), $[Ru(bpy)₂$ - $(CO)(C(O)OCH₃)$ ⁺ (1960 cm⁻¹), and $[Ru(bpy)₂(CO)(CO₂)]$ (1911 cm^{-1}) . This may be correlated with the difference in the electron donor ability of CO, CO_2CH_3 , and CO_2 ligands. In accordance with this, both Ru-N2 (trans to CO) and Ru-N3 (trans to CO , CO_2CH_3 , or CO_2) bond distances for the present complexes have a tendency to lengthen in the same order: $[Ru(bpy)₂(CO)₂]$ ²⁺, 2.102(6) and 2.073(7) Å; $[Ru(bpy)₂$ -(CO)(C(O)OCH3)]+, 2.105(5) and 2.151(5) **A;** and [Ru(bpy)2- (CO)(CO2)], 2.133(10) and 2.204(10) **A.**

The most interesting features in $\lceil \text{Ru(bpy)}_2(\text{CO})(\text{C(O)OCH}_3) \rceil^+$ and $[Ru(bpy)₂(CO)(CO₂)]$ are the bond lengths and angles of the $Ru-CO₂$ fragments. The $Ru-C1$ bond distance of the former is 2.042(6) **A** with Ru-Cl-01 (125.4(5)'), Ru-C1-02 $(115.4(4)°)$, and O1-C1-O2 $(119.2(6)°)$, and that of the latter is 2.064(13) **A** with Ru-C1-01 (118.5(9)'), Ru-C1-02 $(120.6(10)°)$, and O1-C1-O2 (120.9(12)°). The Ru-CO₂ bond distance of $[Ru(bpy)₂(CO)(CO₂)]$ is close to the CO₂-metal distances in $[Rh(\eta^1-CO_2)Cl(diars)_2]$ and $[Co(pr-salen) KCO₂THF_{1_n}$ ³ and the Ru-CO₂CH₃ bond length of [Ru- $(bpy)_2(CO)(C(O)OCH_3)$ ⁺ is also similar to metal-CO₂CH₃ ones of other methoxycarbonyl-metal complexes.¹⁹ Although a double bond character has been suggested in the W -CO₂ bond of $[W(CO)_{5}(\eta^{1}-CO_{2})]^{2-}$, the fact that the Ru-C1 distance of $[Ru(bpy)₂(CO)(C(O)OCH₃)]$ ⁺ is shorter than that of [Ru- $(bpy)_2(CO)(CO_2)$] suggests that the multibond character for the Ru-CO2 bond is not always larger than that for the Ru- $C(O)OCH₃$ bond. A difference in the C1-O1 (1.245 (16) \AA) and C1-O2 (1.283 (15) \AA) bond distances of $\left[\text{Ru(bpy)}\right]$ - $(CO)(CO₂)$. 3H₂O may be associated with a difference in the number of hydrogen bondings of 02 with two solvated water (04 and OS") and that **of** 01 with another solvated water (06) (see below). It is, **however.worthytonotethattheC1-01** (1.245(16) Å) and C1-O2 (1.283(15) Å) bond distances of $\left[\text{Ru(bpy)}\right]_2$ - $(CO)(CO₂)$] are intermediate between those of $\left[\text{Ru(bpy)}\right]$ ²- $(CO)(C(O)OCH₃)]$ ⁺ (1.191(8) and 1.344(8) Å), and the average of the C1-01 and C1-02 bond distances of the former (1.264 **A)** is almost consistent with that of the latter (1.268 **A).** The

Figure 7. Three-dimensional network of hydrogen bonding of [Ru- $(bpy)_2(CO)(CO_2)$].3H₂O.

C1-O1 and C1-O2 bonds of $[Ru(bpy)₂(CO)(CO₂)]$, therefore, are approximated by a bond order of 1.5, and the one extra electron-pair involved in $[Ru(bpy)_2(CO)(CO_2)]$ resulting from dissociation of the terminal proton of $[Ru(bpy)_2(CO)(C(O)OH)]^+$ may be mainly localized in the $CO₂$ ligand rather than delocalized over the $RuCO$, moiety.

The increase in the electron density of the $CO₂$ moiety of $\lceil Ru(bpy)_2(CO)(CO_2)\rceil \cdot 3H_2O$ compared with that of $\lceil Ru (bpy)_2(CO)(C(O)OH)$]⁺ may be compensated for by the existence of the extended three-dimensional network of hydrogen bonding observed between thecomplex and three hydrated water molecules (Figure 7). Each water molecule is connected by three hydrogen bonds; e.g., O4 (water) is connected to O2 (CO₂), O5 (water), and 06 (water) with distances of 2.711(14), 2.800(14), and 2.751(14) **A,** respectively. Similarly, *05* is connected to 02 $(CO₂)$, O4 (water), and O6 (water) with distances of 2.764(14), 2.800(14), and 2.870(14) **A,** respectively, and 06 **is** connected to 01 (C02), 04 (water) and *05* (water) with 2.653(15), 2.751 (1 *5),* and 2.870(14) **A,** respectively. The hydrogen-bonding network of $\text{[Ru(bpy)_2(CO)(CO_2)}\cdot 3\text{H}_2\text{O}$ results in a distinct difference in the solubility of hydrated and anhydrous [Ru- $(bpy)_2(CO)(CO_2)$; $\left[\text{Ru(bpy)}_2(CO)(CO_2)\right]$.3H₂O is only soluble in H_2O , CH₃OH, and C₂H₅OH and is almost insoluble in CH₃CN, DMSO, and DMF, while anhydrous $[Ru(bpy)₂(CO)(CO₂)]$ prepared similarly in dry CH₃CN is quite soluble in most organic solvents.

Acknowledgment. We appreciate the support of this work in part by Grants-in-Aid for Scientific Research No. 03453 105 from the Ministry of Education, Science and Culture.

Supplementary Material Available: For these structure studies, tables of atomic parameters with averaged thermal parameters and anisotropic thermal parameters for $\text{[Ru(bpy)}_2(\text{CO})(\text{CO}_2)\text{]} \cdot 3\text{H}_2\text{O}$ and [Ru(bpy)_2 - $(CO)_2$ $(PF_6)_2$, atomic parameters with *U* values for $[Ru(bpy)_2+$ $(CO)(C(O)OCH₃)$]B $(C₆H₅)₄$ ·CH₃CN, tables of bond distances and angles for all three compounds, and numbering diagrams for [Ru- $(bpy)_2(CO)(C(O)OCH_3)$]B(C_6H_5)₄°CH₃CN and the PF₆- anions in $[Ru(bpy)₂(CO)₂](PF₆)₂$ (21 pages). Ordering information is given on any current masthead page.

⁽¹⁸⁾ Reveco, P.; Schmehl, R. H.; Cherry, W. R.; Fronczek, F. R.; Selbin, J. *Inorg. Chem.* **1985,** *24,* 4078. **(19)** (a) Burk, P. L.; Engen, D. **V.;** Campo, **K. S.** *Organomerallics* **1984,** *3,*

^{493.} **(b)** Garlaschelli, **L.;** Malatesta, M. C.; Martinengo, *S.;* Demartin, F.; Manassero, M.; Sansoni, **M.** J. *Chem. Soc., Dalton Trans.* **1986,** 777. (c) Cardaci, **G.;** Bellachioma. G.; Zanazzi, P. F. J. *Chem. SOC.. Dalron Trans.* **1987,** 473.